TECHNET Archives

1996

TechNet@IPC.ORG

Options: Use Monospaced Font
Show Text Part by Default
Show All Mail Headers

Message: [<< First] [< Prev] [Next >] [Last >>]
Topic: [<< First] [< Prev] [Next >] [Last >>]
Author: [<< First] [< Prev] [Next >] [Last >>]

Print Reply
Subject:
From:
Karen Tellefsen <[log in to unmask]>
Date:
Wed, 16 Oct 1996 10:25:54 -0400 (EDT)
Content-Type:
text/plain
Parts/Attachments:
text/plain (349 lines)
            CIRCUIT BOARD IONIC CLEANLINESS MEASUREMENT --
            WHAT DOES IT TELL US?
     
                                          by

                                    Dr. Jack Brous
                                    Alpha Metals, Inc.
                                    Jersey City, New Jersey
     
1.  Introduction
     
         In the early 1970's the only fluxes permissible for electronics
         In the early 1970's the only fluxes permissible for electronics
         manufacturing for military applications were types R (pure rosin
         only) and RMA (rosin based, mildly activated).  Before any of 
         these fluxes could be approved and established on the military
         "qualified products list", it was necessary to demonstrate that
B
         they were non-corrosive and did not contain ionic halides in
         excess of established critical levels.  All fluxes were required
         to pass a silver chromate paper test which sensitively indicates
         the presence of halide ions.  Additionally, the flux was subjected
         to a copper mirror corrosion test which is a sensitive indicator 
         of any corrosive behavior of the flux toward copper.
     
         Because of the desirability for using stronger, more active fluxes
         in electronic assembly, the military agencies decided to include
         the category RA (fully activated rosin) on their approved flux
         list.  RA fluxes do not, as a rule, pass the copper mirror or 
         chromate paper tests and there was, therefore, increased concern
         about allowing the more highly active rosin flux into military
         electronics manufacture.
     
         Although circuit assemblies are ordinarily cleaned after assembly
         soldering, traces of RA fluxes, left after the final cleaning,
         would be considered a greater risk than those of RMA or R types.
         It was, therefore, imperative to thoroughly clean these assemblies
         to provide assurance that the potentially harmful active residues 
         had been thoroughly removed.
     
     2.  Cleanliness Measurement
     
         The RA fluxes most commonly use halide salts, such as amine hydro-
         chlorides, as additives to enhance fluxing activity.  In cleaning,
         these additives are removed along with the rosin residue.  If,
         however, some of the residue is not removed in the cleaning 
         process, some of the halide activators can remain behind, en-
         trapped in the solid rosin residue.
     
         Such highly ionic material can be very sensitively detected and
         measured if brought into a solution containing water.  Using
         electrochemical conductometric methods, ionic materials, which are
         easily detectable, can act as tracers for the presence of any RA
         flux residue remaining after the cleaning process.

         It is well known, to physical and electrochemists, that the addi-
         tion of a strongly ionized salt to deionized water will enhance
         its electrical conductance to a degree that is nearly proportional
         to the concentration of the salt {1,2}.  Conductance measurement
         can thus be used to indicate concentration of an ionic salt ex- 
         tracted into a solution.
     
         This was discussed, by T.F. Egan of Bell Laboratories, in a paper
         published in 1973{3}, who used this method to measure ionic plating
         salt residues on plated components.  The method described by his 
         was, however, unsuitable to measure the ionic content of rosin flux
         residues from an electronic assembly.  Rosin is insoluble in pure
         water, therefore, any ions present in the residue would be trapped
         in a matrix of the solid, insoluble rosin and not brought into
         aqueous solution where they could be measured.
     
         In 1972, W. Hobson and R. DeNoon, at the Naval Avionics Center,
         Indianapolis, IN, showed that rosin flux residues could be solu-
         bilized in a solvent mixture containing 75% isopropanol and 25%
         water{4}.  This mixture could be used as the solvent base for the 
         conductometric measurements.  The alcohol, at that level, is able
         to solubilize any rosin traces and the water is needed to sustain
         ionization for a conductivity measurement.
     
     3.  Testing Methods
     
         Several testing procedures and instruments were established to 
         monitor the levels of residual ions extracted in alcohol/water
         mixtures:
     
        a.  The original method of Egan was adapted by Hobson and DeNoon
              to include the use of an isopropyl alcohol/water mixture as
              the extracting solvent.  In this method, the assembled board
              is flushed with a pre-determined quantity of the mixture and
              the resistivity of the "contaminated" solvent measured{4}.
     
       b.   An instrument was developed in which an assembly was immersed
              in an agitated, fixed volume of a mixture of isopropanol/
              water{5}.  The resistivity of the solution is monitored 
              until there is no further indication of resistance change.  
              The effective level of ionic contamination can then be calcu-
              lated from the change in solution resistivity.  This instru-
              ment, utilizing extraction into a static volume of alcohol/
              water mixture was named the Omega Meter.
     
        c.   Another process was developed utilizing a continuously re-
              circulating system in which the solvent mixture was deionized
              by passing it through an ion-exchange column before recircu-
              lating it back into the extraction tank{6,7}.  During the
              course of ionic extraction from an assembly, the conductivity
              of the mixture falls continuously as the sample and solution
              are cleaned.  The integrated ionic measurement, over time, is
              indicative of the total extracted ionic material.

             This process, known as the dynamic extraction method, will
             more sensitively indicate the completeness of the extraction.
             This process is used in the Ionograph.
     
     4.  Cleanliness Standards - How Clean is Clean?
     
         In 1977-78, a program was run at the Naval Avionics Center,
         Indianapolis, to evaluate various ionic testing systems and to
         attempt to establish ionic residue levels for ionic fluxes which
         would be "safe" if left on circuit assemblies{8}.  At a meeting
         held in Indianapolis, February 1978, all of the data of the program
         was reviewed and pass/fail limits were established for ionic clean-
         liness levels of electronic assemblies for military applications.
         These values were different for the different instruments which 
         were available since ionic residues were extracted from the assem-
         blies with various degrees of efficiency.  These efficiency, or
         equivalence factors, were determined from the extensive data accum- 
         ulated in the prior testing program and resulted in recommendations
         for pass/fail limits for general military requirements.
     
         These values, subsequently, became generally adopted as the control
         levels for the cleaning processes used to remove rosin flux resi-
         dues{9} and were widely accepted for industrial non-military as
         well as the military applications for which there were developed.  
         In time, they were also accepted by many as the cleanliness
         standards for assemblies made with non-rosin fluxes, such as
         water-soluble (OA type) and synthetic-activated (SA type) fluxes.
         In short, these tests and their associated values, which were de-
         rived for RA type rosin fluxes, were gradually and arbitrarily
         extended to cover a variety of other flux types.
     
         Other processing operations were included, as well, in this type
         of testing to these same limits.  One example is the ionic testing
         of bare boards, either prior to or after application of solder
         masks.  While it is true that the presence of contaminants, on a
         laminate surface, could affect subsequent coating adherence as well
         as electrical characteristics, specific critical levels could 
         differ significantly from those established for activated rosin
         fluxes.
     
          Another example is in applying ionic testing to circuits which are
         assembled, entirely or in part, using solder pastes.  In such 
         precesses, the paste is applied in very localized areas.  During 
         the reflow process the flux runs out in these limited areas and is 
         not distributed over the entire board as is the case for the wave 
         soldering process.  Ionic measurement of these assemblies, after
         cleaning, assumes that any residual ionic contamination is distri-
         buted over the entire surface of the board since the total ex- 
         tracted ionic material is averaged over the estimated surface area
         of the whole assembly.  In using solder pastes, however, traces of
         flux residues, which are present, will be concentrated in the very
         much smaller areas of initial application and thus would represent
         a much higher locallized contamination level that is indicated by a
         general ionic extraction test.
     
     5.  How Clean is Good?
     
         Perhaps a more pertinent question, that should be asked, is "How
         clean should an assembly be to be functionally good?"  An ultimate
         test must be one of performance rather than the processing standard
         of a measured ionic level.  Unfortunately, ionic residue levels
         have, in themselves, become confused in many minds as a criterion 
         of "goodness" or "badness" of the product.  In particular, attempts
         have been made to correlate ionic levels to more functional indica-
         tors such as Surface Insulation Resistance (SIR) testing.  SIR is
         a measure of how various materials and processes affect the elec-
         trical insulating characteristics of the laminate surfaces between
         conductors.
     
         In the earlier history of electronic assembly, when discreet wiring
         was used to connect the various components, insulation between
         conductors was derived from the insulating coating on the wires.
         With the advent of printed wiring assemblies, the insulation became
         the bare or solder-masked laminate spaces between the printed 
         wires.  This exposed type of insulation is potentially more sus-
         ceptible to the effects of residues from the soldering and cleaning
         processes, particularly if the assembly is to be subjected to
         various conditions of temperature and humidity.  A measurement of
         the electrical effects of the processing and chemicals used in the
         assembly would, therefore, be most indicative of functional per-
         formance in the subsequent application.
     
         We know, today, that is not merely the presence or absence of ions,
         as such, that determines good or bad behavior of a material resi- 
         due.  Some of the poorest electrical behavior experienced has been
         seen with surfaces which had been contaminated with polyglycols
         and polyglycol surfactants{10,11}.  These materials, although
         completely non-ionic, may, nevertheless, have disastrous effects on
         SIR and Electromigration if they are residual on the laminate sur-
         face.  Such materials have often been used in the formulation of 
         many water-soluble assembly fluxes and reflow and hot air solder-
         levelling fluxes used in PCB fabrication.
     
         To compound the problems caused by these materials, many of them 
         are absorbed into the surface of the plastic laminate when exposed
         to the high temperature of the soldering or HASL or reflow pro-
         cesses{11,12.  They are then not easily removable in normal
         aqueous or solvent cleaning processes.  These retained materials
         can give rise to serious degradation of the subsequent measured
         values of SIR.

         The most important factor determining a material's ability to 
         affect SIR is its ability to absorb water molecules from the am-
         bient air.  The hygroscopic nature of the molecule determines its
         ability to interact with atmospheric water molecules to form multi-
         layer films of water on the surface.  Such water films are, of 
         themselves, slightly conductive and can result in degradation of
         the SIR.  The presence of ionic materials on the surface, which 
         could dissolve in this water film would serve only to exacerbate
         the surface conductance and further lower SIR.
     
         Although many polyglycols are examples of some of the worst of-
         fenders in degrading SIR, such non-ionic materials are not the
         only electrically hazardous materials.  The key point of commonali-
         ty of such materials is their ability to absorb moisture from the
         ambient atmosphere (hygroscopicity).  This property can be asso-
         ciated with ionic or non-ionic materials, but is not universal for
         either type.
     
     6.  "No Clean" Fluxes
     
         In recent years, under the impetus of environmental protection, a
         new breed of fluxes has evolved - "no clean" fluxes.  These fluxes
         are composed largely of weakly-ionized organic acids at low solids
         levels which, at soldering temperatures, are sufficiently active to
         provide good cleaning of the metallic surfaces and wetting by the
         molten solder.
     
         In most instances, much of the organic acid is volatillized at the
         soldering temperatures or neutrallized by chemical reaction.  Some
         traces of the organic acids, however, are always present after the
         soldering.  Some of these have very low levels of hygroscopicity 
         and exhibit good electrical performance if they are limited to con-
         trolled amounts.  It has been shown, however, that excessive levels
         of these organic acid residues can significantly degrade electrical
         characteristics such as SIR and Electromigration{13,14}.
     
         Conventional ionic extract testing could be of great value as a 
         quality control tool in a production environment.  This test can be
         used as a periodic check of the ability of the "no clean" process
         to leave residue amounts in a consistent range below levels that 
         can seriously affect electrical characteristics.  Significant in-
         creases of ionic levels, in a periodic testing program, would then
         indicate changes in the process which result in heavier residue
         levels and their associated effects on the electrical character-
         istics of the board surface.
     
         It would be necessary, however, to initially develop the information 
         to define the "normal" ionic operating range for a specific
         "no clean" process and flux.  Once established, further periodic
         ionic tests could serve as a rapid monitoring check - as compared
         to lengthy and more difficult SIR tests - to indicate the degree of
         control maintained over the "no clean" process and flux.

     
         CONCLUSIONS
     
         -    Ionic extract testing is a valuable testing technique for 
              monitoring and controlling the effectiveness of a cleaning
              process.
              
         -    Original pass/fail limits were established for wave soldering 
              processes using rosin fluxes.  These limits are not necessarily 
              applicable to other types of fluxes and other soldering
              processes.
     
         -    Ionic extract values are not necessarily valid indicators of 
              the "goodness" or "badness" of the final assemblies in terms
              of the electrical properties of their laminate surfaces.
     
         -    Ionic measurement can be very valuable in controlling pro-
              cesses using "no-clean" flux technology.  This can be used in
              monitoring amounts of flux solids applied as well as levels of
              residues remaining on assemblies after soldering.


         REFERENCES
     
         1.   J.C.Bockris and A.K.N.Reddy, Modern Electrochemistry, Plenum
              Press, New York (1970)

         2.   F. Daniels and R.A.Alberty, Physical Chemistry, 2nd Ed.,
              John Wiley & Sons, New York, London (1961)

         3.   T.F.Egan, Determination of Plating Salt Residues, Plating,
              50(4), 350-354 (1973)

         4.   W.T.Hobson and R.J.DeNoon, Printed Wiring Assemblies,
              Detection of Ionic Contaminants On, Materials Research
              Report 3-72 (1972) Naval Avionics Center, Indianapolis, IN

         5.   E. Wolfgram, Means and Method for Measuring Levels of Ionic
              Contamination, U.S.Patent 4,023,931 (May 17, 1977)

         6.   J. Brous, Self-Purging Apparatus for Determining the
              Quantitative Presence of Derived Ions, U.S.Patent 3,973,572
              (Aug. 10, 1976)

         7.   J.Brous, Evaluation of Post-Solder Flux Removal, Welding
              Journal Research Supplement, 444s-444s (Dec. 1975)

         8.   W.Hobeen and R.J.Donoon, Review of Data Generated with
              Instruments Used to Detect and Measure Ionic Contaminants
              on Printed Wiring Assemblies, Materials Research Report 3-
              78 (1978) Naval Avionics Center, Indianapolis, IN

         9.   MIL-P-28809, Military Specification, Printed Wiring
              Assemblies

         10.  F.M.Zado, Proceedings of Technical Program-NEPCON, 1979
              Philadelphia, PA, 3876-354

         11.  J.Brous, Water Soluble Flux and Its Effect on PC Board
              Insulation Resistance, Electronic Packaging and Production,
              July 1981, 79-87

         12.  J.Brous, Electrochemical Migration and Flux Residues -
              Causes and Detection, Proceedings of the Technical Program,
              NEPCON West 1992, 387-394

         13.  L.A.Guth, To Clean or Not to Clean?, Circuits
              Manufacturing, Feb. 1989

         14.  J.E.Sohn and U.Ray, Weak Organic Acids and Surface
              Insulation Resistance, IPC Technical Paper 1081, IPC,
              Lincolnwood, IL June 1994

-- 
Karen Tellefsen
[log in to unmask]

***************************************************************************
* TechNet mail list is provided as a service by IPC using SmartList v3.05 *
***************************************************************************
* To unsubscribe from this list at any time, send a message to:           *
* [log in to unmask] with <subject: unsubscribe> and no text.        *
***************************************************************************



ATOM RSS1 RSS2